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1. Algebraic Geometry. Projective varieties.

Definition

An algebraic variety is defined as the set of solutions of a system
of polynomial equations over real or complex numbers.

I work over C.

Definition

Let x0, ..., xn be affine coordinates on An+1 and let the group C∗

act via:
λ(x0, ..., xn) = (λa0x0, ..., λ

anxn).

Then, the weighted projective space P(a0, ..., an) is the quotient
(An+1 \ 0)/C∗. Under this group action x0, ..., xn are the
homogeneous coordenates on P(a0, ..., an).
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1. Algebraic Geometry. Projective varieties.

Notice that if a0 = ... = an = 1 we get the ordinary projective
space Pn.

Definition

A polynomial f is weighted homogeneous of degree d if every
monomial xα appearing in f satisfies α · (a0, ..., an) = d . Then
f = 0 is well defined on P(a0, ..., an) when f is weighted
homogeneous so that one can define varieties in P(a0, ..., an) using
weighted homogeneous ideals of C[x0, ..., xn].

Definition

A projective variety is an algebraic variety that is a subset of one
of the projective spaces defined above.
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2. Fano varieties

Definition

We say X is a Fano variety, if it is normal, projective variety
whose −KX is ample.

For X surface we can check ampleness as follows:

Theorem (Nakai/Moishezon Criterion for
Ampleness)

A line bundle L on a nonsingular projective surface X is ample if

L2 > 0 and L · C > 0 for any curve C ⊂ X .
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3. Del Pezzo surfaces.

Definition

A del Pezzo surface, X, is a 2 dimensional Fano variety.
The degree d of a del Pezzo surface X is by definition d = K 2

X .

Remark

Most of them can be represented as the blowup of P2 at r points
in general position. In these cases d = 9− r .

Examples:
• P2

• Any cubic surface.
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3. Del Pezzo surfaces.

Let X be a del Pezzo surface of degree 2. Then X ⊆ P(1, 1, 1, 2)
(with homogeneous coordinates x , y , z , w) can be given by the
homogeneous equation,

w2 + G4(x , y , z) = 0

Example:
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4. Introduction to K-stability.

It was introduced by Tian in ’97.
Motivation: To understand the existence of Kälher-Einstein
metrics. (Fano variety X has KE metric iff X is K-polystable)

K-stability was reformulated algebraically by Donaldson ’02.

Why is interesting for Algebraic Geometers?
Because K-stability allows the construction of moduli (called
K-moduli).

Naive explanation of moduli: A (fine) moduli space requires
families of points on the moduli space to correspond to families of
the kind of object you’re trying to classify (in a very precise way).
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4. Introduction to K-stability.

Setup: X: smooth del Pezzo surface.

Definition

Let f : Y → X be a birational morphism. Take E be a prime
divisor in Y .
We define the log discrepancy as

AX (E ) = 1 + ordE (KY − f ∗(KX )).

We also need to define the expected vanishing order

S−KX
(E ) =

1

−K 2
X

∫ τ

0
vol(f ∗(−KX )− tE ) dt.
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4. Introduction to K-stability.

Definition

Let f : Y → X be a birational morphism. Take E be a prime
divisor in Y . (Add def of prime div).
We define the log discrepancy as

AX (E ) = 1 + ordE (KY − f ∗(KX )).

We also need to define the expected vanishing order

S−KX
(E ) =

1

−K 2
X

∫ τ

0
vol(f ∗(−KX )− tE ) dt.

where
τ(E ) = sup{t ∈ Q|vol(f ∗(−KX )− tE ) > 0}

is called the pseudoeffective threshold.



4. Introduction to K-stability.

δ-invariant (stability threshold):

δ(X ) = inf
E/X

AX (E )

S−KX
(E )

Theorem (Blum, Jonsson, Fujita, Li, Liu, Xu,
Zhuang)

δ(X ) > 1(≥ 1) ⇔ X is K-(semi)stable.

Note that,

K-stability ⇒ K-polystability ⇒ K-semistability
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4. Introduction to K-stability.

Local Analog of δ-invariant:

δp(X ) = inf
E/X ,p∈CX (E)

AX (E )

S−KX
(E )

δ(X ) can be defined by the local stability threshold:

δ(X ) = inf
p∈X

δp(X )

Geometrical meaning: It measures how close the surface is to
having constant curvature.
References: K-stability survey in Chenyang Xu’s webpage and The
Calabi book by Araujo, Castrevet, Chelchov, Fujita, Kaloghinos,
Martinez-Garcia, Shramov, Suss, Viswanathan.
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5. What am I doing?

Goal: Find a point p in a del Pezzo surface of degree 2, X , such
that δp(X ) is irrational.
Abban-Zhuang proved the existence of such a point in a cubic
surface.

Conjecture (Xu)

For any Fano variety X of dimension greater or equal to 3, δp(X )
is rational for every p ∈ X .

Theorem (EA ’23)

Let X ⊆ P(1 : 1 : 1 : 2) be a smooth del Pezzo surface of degree 2
and let p0 = (x0, y0, z0,w0) ∈ X be a closed point with w0 ̸= 0.
Let Q = Tp0(X ) ∩ X be the tangent hyperplane section. Assume
Q = L ∪ C where L is a line and C is a cubic curve that intersects
transversally at p0. Then δp0(X ) = 6

71(11 + 8
√
3).
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